
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

TECHNICAL RESEARCH REPORT

Relay Placement Approximation Algorithms for k-Connectivity
in Wireless Sensor Networks

by Abhishek Kashyap, Samir Khuller, Mark Shayman

TR 2006-15

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Relay Placement Approximation Algorithms for k-Connectivity in
Wireless Sensor Networks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland,Department of Computer Science ,College
Park,MD,20742

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Relay Placement Approximation Algorithms for
k-Connectivity in Wireless Sensor Networks*

Abhishek Kashyap†, Samir Khuller‡, Mark Shayman†
†Department of Electrical and Computer Engineering

‡Department of Computer Science
University of Maryland, College Park, USA

Email: {kashyap@eng, samir@cs, shayman@eng}.umd.edu

Abstract— Sensors typically use wireless transmitters to com-
municate with each other. However, sensors may be located in a
way that they cannot even form a connected network (e.g, due
to failures of some sensors, or loss of battery power). In this
paper we consider the problem of adding the smallest number
of additional (relay) nodes so that the induced communication
graph is k-connected1. The problem is NP -hard. We develop
algorithms that find close to optimal solutions for both edge and
vertex connectivity. For k-connectivity between sensor nodes, we
prove the algorithms have an approximation ratio of O(k2) for
vertex connectivity and O(k) for edge connectivity. In addition,
our methods extend with the same approximation guarantees to a
generalization when the locations of relays are required to avoid
certain polygonal regions (obstacles).

We prove that the algorithms for k-connectivity between sensor
and relay nodes have an approximation ratio of O(k3) for vertex
connectivity and O(k2) for edge connectivity.

I. INTRODUCTION

A wireless sensor network is a group of sensor nodes with
sensing, processing and communication capabilities, deployed
to achieve a certain objective, Akyildiz et al. [1]. Typical
applications of sensor networks are habitat monitoring, envi-
ronmental monitoring, object tracking, etc. Sensor networks
may exist in harsh network conditions, thus the network
must be designed so that failure of some sensor nodes or
some communication links between them does not disrupt the
network. We consider the problem of forming a fault-tolerant
sensor network topology.

We define fault-tolerance as the existence of multiple in-
ternally vertex-disjoint (or edge-disjoint) paths between each
pair of terminal nodes. If k vertex (edge) disjoint paths exist
between each pair of nodes, the network is said to be k-vertex
(edge) connected. A k vertex (edge) connected graph has the
property that the failure of any set of (k − 1) nodes (edges)
cannot disconnect the network. We also consider the problem
where fault-tolerance is desired between both terminal and
relay nodes. We call this objective as full k-connectivity,
and the objective of achieving k-connectivity among terminal
nodes as partial k-connectivity.

1We consider both edge and vertex connectivity. We consider k-connectivity
between sensor nodes, as well as between sensor and relay nodes.

*This research was partially supported by AFOSR under grant
F496200210217, NSF under grant CNS-0435206, NSF CCF-0430650, NSF
CNS-0519554.

Sensor nodes have very limited energy. Thus, they transmit
at low power levels, and have a limited transmission range.
We assume a fixed transmission range for each sensor node.
It may not be feasible to construct even a connected topology
among the sensor nodes due to their short transmission range
and potential large area deployments. We propose the use
of additional relay nodes, whose position we can control, to
achieve the desired level of connectivity (number of vertex or
edge disjoint paths) among the sensor nodes. The relay nodes
are cheaper than sensor nodes as they do not have any sensing
capabilities. We assume they have the same communication
capabilities as the sensor nodes.

There has been recent work in topology control of sensor
networks. Bredin et al. [2] present an O(k4)-approximation
algorithm for achieving full k-vertex connectivity using mini-
mum number of relays for nodes distributed in the Euclidean
plane. Their algorithms use a similar approach as ours and
their analysis for the component that achieves partial k-
vertex connectivity gives an approximation ratio of O(k3).
We analyze our algorithms and prove ratios of O(k2) and
O(k3) for partial and full k-connectivity respectively. This
is an O(k) improvement on previous bounds, and we give
algorithms for both edge and vertex connectivity, for both
partial and full k-connectivity. We provided algorithms for
partial k-connectivity in [3], and proved the approximation
ratio to be 10 for edge and vertex connectivity for k = 2,
for nodes in the Euclidean plane. The approximation ratio
proved in this paper is consistent with Kashyap et al. [3]
for 2-vertex connectivity (see Section III). We provided an
analysis of the algorithms for partial 2-connectivity among
nodes in higher dimensional metric spaces in [4], and proved
the approximation bounds to be 2M , where M (MST number)
is the maximum node degree in a minimum degree MST in
the space. The MST number is 5 for the Euclidean plane
(Monma and Suri [5]), 13 for the 3-dimensional Euclidean
space, and 4 for the rectilinear plane (Robins and Salowe [6]).
We prove that the algorithm for k-edge connectivity is an
O(Mk)-approximation for partial connectivity, and O(Mk2)-
approximation for full-connectivity. The approximation ratio
proved in this paper is consistent with Kashyap et al. [3], [4]
for 2-edge connectivity (see Section IV).

Hao et al. [7] consider the problem of placing the minimum
number of backbone nodes (relays) among a set of candidate

locations such that each sensor node has paths to at least
two backbone nodes, and the backbone nodes have at least
two vertex-disjoint paths between them. They provide an
approximation algorithm having an O(D log n) approximation
ratio, where D depends on the diameter of the network and
n is the number of sensor nodes in the network. Liu et
al. [8] consider the problem of placing relays in a network
of sensor nodes so that the network is 2-connected. They
provide a (6+ε)-approximation algorithm for connectivity and
two approximation algorithms for 2-connectivity with ratios
(24 + ε) and (6/T + 12 + ε), where T is the ratio of relays
needed for connectivity to the number of sensor nodes. Their
problem is different from ours as they want the set of relays to
be a dominating set among the sensor nodes, i.e., each sensor
node should be directly connected to at least one relay node.

The nodes on which a fault tolerant topology is desired
are referred to as terminal nodes in the rest of the paper.
The problem of constructing a connected network on terminal
nodes using a minimum number of relay nodes has been
considered in Lin et al. [9], Mǎndoiu and Zelikovsky [10]
and Chen et al. [11]. Lin et al. [9] showed the problem to
be NP -Hard and proposed an approximation algorithm for
constructing a tree using relay nodes. They showed algorithm
to be a 5-approximation. The algorithm restricts the placement
of relay nodes on lines joining pairs of terminal nodes. It
then assigns a weight function to each pair of terminal nodes
according to the number of relay nodes needed to connect
them directly. They find a minimum spanning tree (MST) on
this graph. Proofs of 4-approximation ratio for the algorithm
are provided by Mǎndoiu and Zelikovsky [10] and Chen
et al. [11], and the bound is proved to be tight. Mǎndoiu
and Zelikovsky [10] prove the approximation ratio to be
M−1 for nodes distributed in higher dimension metric spaces.
Chen et al. [11] also provide a 3-approximation algorithm for
the problem. Cheng et al. [12] provide a 2.5-approximation
randomized algorithm for placement of relay nodes to connect
a given set of terminal nodes.

We consider the problem of providing k-(edge, vertex)
connectivity for k ≥ 2 among terminal nodes using minimum
number of relay nodes. The contributions of this paper are
as follows: (1) we prove the algorithms of Kashyap et al. [3]
to be O(k2)-approximation with respect to the optimal for
achieving partial k-vertex connectivity among terminals dis-
tributed in the Euclidean plane; (2) we prove the algorithms of
Kashyap et al. [4] to be O(Mk)-approximation with respect to
the optimal for achieving partial k-edge connectivity among
terminals distributed in a metric space of MST number M
(M = 5 for Euclidean plane); (3) we extend our algorithms
to the generalization where the relays cannot be placed in
certain polygonal regions and show the same approximation
ratios hold for this generalization as well; (4) we provide an
analysis of the algorithm of Bredin et al. [2] for full k-vertex
connectivity, and provide O(k3) bounds; (5) we extend our
partial k-edge connectivity algorithm to provide an O(Mk2)-
approximation full k-edge connectivity algorithm for terminals
distributed in a metric space of MST number M .

The paper is organized as follows: Section II gives the
network model and problem statement. Section III describes
the partial k-vertex connectivity approximation algorithm, and
gives the proof of its approximation ratio. Section IV describes
the algorithm for achieving partial k-edge connectivity and
gives the proof of its approximation ratio. Section V extends
the algorithms to work with the same approximation ratio for
the generalization where relays cannot be placed in certain
polygonal regions of the network. Section VI analyzes the
algorithm of Bredin et al. [2] for full k-vertex connectivity,
to give an improved approximation ratio. It also describes the
full k-edge connectivity approximation algorithm. Section VII
concludes the paper.

II. NETWORK MODEL AND PROBLEM STATEMENT

We model the network as a graph G = (V,E), where V
is the set of sensor nodes, which we call terminal nodes, and
E is the set of links between them. We assume each node
has a limited transmission range, which we normalize to one.
It is assumed that a node can connect to all nodes within its
transmission range. A link e = (x, y) belongs to E if nodes
x and y are within unit distance of each other. The links can
be either omnidirectional RF, directional RF or Free Space
Optical (without obscuration).

We assume we have relay nodes that are identical to the
terminal nodes in terms of their transmission range and type
of links. We assume we have control over the location of relay
nodes. Thus, we place the relay nodes in the network so that
the desired level of connectivity is achieved. We consider two
objectives: one of achieving the desired connectivity between
terminals, and the other of achieving it for both terminals and
relays. The problems can be stated as follows:

Partial k-connectivity: Given a graph G = (V,E), find the
minimum number of relay nodes (denoted by set R) needed
(and their locations) such that the set of nodes V is k-edge
(vertex) connected (k ≥ 2) in the resulting graph G′ = (V +
R,E′), E ⊆ E′. The objective is to construct a graph such
that ∀ u, v ∈ V, λ(u, v) ≥ k; where λ(u, v) is the number
of edge-disjoint (or internally vertex-disjoint) paths between
u and v in G′.

Full k-connectivity: Given a graph G = (V,E), find the
minimum number of relay nodes (denoted by set R) needed
(and their locations) such that the set of nodes V + R is k-
edge (vertex) connected (k ≥ 2) in the resulting graph G′ =
(V + R,E′), E ⊆ E′.

III. ALGORITHM FOR k-VERTEX CONNECTIVITY

We use the algorithm of Kashyap et al. [3] for achieving
k-vertex connectivity among terminal nodes using relays. To
connect two terminal nodes outside each other’s transmission
range, the relay nodes are placed on the straight line con-
necting the two nodes. The algorithm proceeds by forming a
complete graph Gc on the terminal nodes. Equation 1 gives
the weight function used for the edges, where |e| is the length
of an edge. The weight represents the number of relay nodes
required to form an edge. We do not allow the relay nodes to

have edges other than the ones required to form the edge they
are placed on. Then we compute an approximate minimum
cost spanning k-vertex connected subgraph (G′

c) of Gc.

ce = �|e|� − 1 (1)

The problem of finding the minimum cost spanning k-
vertex connected subgraph of a graph is NP -Hard (Gary and
Johnson [13]. Thus, we use the 2-approximation algorithm
of Khuller and Raghavachari [14] for k = 2, and the k-
approximation algorithm of Kortsarz and Nutov [15] for k > 2.
The algorithm takes O(k2n3m) time, where n is the number
of terminals and m is the number of edges in the graph (which
is n(n − 1) for a complete graph, as in our case). For k ≤ 7,
we can use the improved approximation algorithms proposed
by Auletta et al. [16] and Dinitz and Nutov [17]. It is worth
noting that the weight function of Equation 1 is not a metric
as it does not satisfy triangle inequality. In the resulting k-
vertex connected subgraph, the relay nodes are placed to form
the edges (of length greater than one) of the subgraph. We
later prove that this algorithm has an approximation ratio
of O(k2). The solution is then improved by removing some
relays. The relays are allowed to form edges with all nodes in
their transmission range and sequentially removed if k-vertex
connectivity is preserved. We call this step the sequential
removal step. Algorithm 1 describes the algorithm.

Algorithm 1 Relay placement for k-vertex connectivity

1: Construct a complete Gc = (V,Ec) by adding an edge
between each pair of vertices of graph G.

2: Weight the edges of the graph as follows. |e| represents
the length of edge e.

ce = �|e|� − 1

3: Compute an approximate minimum cost spanning k-vertex
connected subgraph from this graph Gc. Let the resulting
graph be G′

c.
4: Place relay nodes (number equal to the weight of the edge)

on the edges in G′
c with link costs greater than zero.

5: For all pairs of nodes (including the relay nodes) in G′
c

within each other’s transmission range, form an edge.
6: For the relay nodes sorted arbitrarily, do the following

(starting at i = 1):

• Remove node i (and all adjacent edges).
• Check for k-vertex connectivity between the termi-

nals.
• If the graph is k-vertex connected, repeat for i = i+1,

else put back the node i and corresponding edges, and
repeat for i = i + 1.

• Stop when all relay nodes have been considered.

7: Output the resulting graph.

A. Proof of Approximation Ratio

We now analyze the algorithm to provide with approx-
imation guarantees. We provide the analysis for terminals

distributed in the Euclidean plane.
We start with some notation. Let T be the set of terminals,

and S be the set of optimally placed Steiner nodes (relay
nodes) needed to achieve k-vertex connectivity among the
terminal nodes. Let s be the number of Steiner nodes needed
when we place them optimally, i.e, s = |S|. In the proof,
we will call the relay nodes placed on straight lines between
terminals (as in our algorithm) beads and the optimally placed
relay nodes Steiner nodes.

As a recap of our algorithm, it forms a k-vertex connected
network among the terminal nodes by placing additional links
between them, and if two terminal nodes are more than unit
distance apart, it adds beads (relay nodes) to form that link.
When we add such a link of length l, it consists of �l� − 1
beads.

We first prove the following lemma, and then present the
main result of this section.

Lemma 3.1: A network that is k-vertex connected on ter-
minal nodes using the minimum number of beads contains at
most (3�k/2�(�k/2�+1)−1)s beads, where s is the minimum
number of Steiner nodes needed.

Proof: Let G0 = (V0, E0) be the optimal k-vertex
connected network on terminals (having the minimum number
of Steiner nodes).

We follow the procedure of Algorithm 2 to construct a k-
vertex connected network that has beads and no Steiner nodes.
We will prove that this network does not contain more than
(3�k/2�(�k/2� + 1) − 1)s beads.

Algorithm 2 starts by finding the connected components
(SCi) of Steiner nodes in the graph constructed on the Steiner
nodes. It constructs a minimum-degree minimum spanning
tree (MST) on Steiner nodes for each connected component,
starting with any Steiner node in that component as the root.
Let the trees be ST1, .., STm. The algorithm then removes
Steiner nodes of a connected component SCj from Gj−1

and adds beads between the terminals connected to those
Steiner nodes to get Gj , which is also k-vertex connected
between terminal nodes (Step 4). The process is repeated for
all connected components, and the resulting graph has zero
Steiner nodes and is k-vertex connected on the terminals.

Let us now explain the procedure to construct Gj from Gj−1

by adding beads between the terminal nodes and removing
Steiner nodes. Consider the graph formed by the Steiner nodes
in STj and the terminal nodes within the transmission range
of these Steiner nodes. Denote this graph by Hj . We form a
graph on terminals that is similar to a Harary graph, in which
we form a cycle between the terminal nodes using beaded
(and direct) links between the terminals contained in Hj in
Gj−1 and delete the Steiner nodes of STj to get Gj . Then, we
connect each terminal node to the preceding �k/2� terminals
on the cycle and the successive �k/2� terminals on the cycle.
If the total number of terminal nodes in Hj is less than k +1,
we form a complete graph.

We now prove that the graph Gm constructed using the pro-
cedure described above is k-vertex connected on the terminals.
The proof is based on mathematical induction and is similar

Algorithm 2 Construction of k-vertex connected network with
beads

1: Define a graph GS = (S,ES) on the Steiner nodes, where
an edge (u, v) is in ES if it is an edge between the Steiner
nodes u, v in G0.

2: Find all the connected components (SCi) in GS .
3: Construct a minimum-degree MST in each connected

component, and call the trees ST1, .., STm.
4: Set j = 1. While j ≤ m:

1) Remove the Steiner nodes contained in STj from
Gj−1.

2) Add beads between terminals to get the graph Gj ,
which is also k-vertex connected on the termi-
nals. The procedure for adding beads and removing
Steiner nodes is explained later.

3) Set j = j + 1.

5: Output the resulting graph Gm.

to the proof of k-vertex connectivity in Bredin et al. [2].
G0 is the optimal Steiner graph, that is k-vertex connected

on the terminals. Let Gi−1 be k-vertex connected on the
terminals. Thus, removal of any set C of k−1 vertices does not
disconnect the terminals in Gi−1. We prove by contradiction
that all terminals are connected in Gi −C as well. Let u and
v be the two terminals which are disconnected in Gi −C. All
terminal pairs (u, v) have a path in Gi−1−C. If the path does
not use more than one terminal connected to component SCi,
u and v are connected in Gi − C as well. If the path uses at
least two terminal vertices connected to SCi (u1, v1 being the
first and last terminals connected to SCi on the path), that path
exists as well if there are at least k +1 terminals connected to
SCi, since we form a Harary graph (that is k-vertex connected)
between all terminals connected to SCi. If there are less than
k + 1 terminals (which will be u1, v1), a direct edge exists
between them (since we formed a complete graph in that case)
and thus a path exists between u and v in Gi − C. Thus, Gi

is k-vertex connected on terminals. Therefore, by induction,
Gm is k-vertex connected on terminals.

We now describe the procedure of constructing the Harary
graph on terminals connected to each Steiner component SCj .
Algorithm 3 describes the algorithm for construction of the k-
vertex connected graph between terminal nodes connected to
the Steiner nodes of STj . The algorithm works as follows:
Start at the root of STj (call the root st1, dropping subscript
j for simplicity). Connect to st1 all terminal nodes within
its transmission range, and mark them. Let the set of marked
terminal nodes be {t1, .., tl}. Start a Depth First Search (DFS)
traversal of the tree formed by STj ∪ {t1, .., tl} (rooted
at st1), starting with any child of st1. The children (both
Steiner nodes and terminals) of a node are traversed in an
anti-clockwise manner, i.e., the next child to traverse is the
first child encountered in an anti-clockwise sweep around the
Steiner node, starting from the last child traversed. If no child
of the Steiner node has been traversed yet, the child traversed

A

B

C

D E

F

 1

2

3

4

5
6

7

8
9

10

11

(a) Tree on Steiner and ter-
minal nodes

A

B

11

10

9

8

7

6
5

4

3

2

 1

F

ED

C

(b) Depth first traversal and cy-
cle creation

 1

2

3

4

5
6

7

8

9

10

11

(c) Cycle after removal of
Steiner nodes

 1

2

3

4

5
6

7

8

9

10

11

(d) Constructed Harary graph

Fig. 1. Example for removal of Steiner nodes and addition of beads for
k = 3

is the one encountered in the sweep starting from the parent
node. Whenever a new Steiner node stj is encountered in the
traversal, mark all unmarked terminal nodes in the Steiner
node’s transmission range and connect them to it (thus l
increases at this step). Figure 1(a) shows an example tree
constructed using this procedure for k = 3. While doing the
DFS traversal, add required number of beads to form a link
between each terminal with the next terminal encountered in
the DFS traversal. Complete the cycle by connecting the last
added terminal to the first terminal encountered in the DFS
traversal2. Figure 1(b) shows the cycle created between the
terminal nodes in the example, starting at terminal 1. Remove
the Steiner nodes. Form the Harary graph by connecting each
terminal to preceding and successive �k/2� vertices on the
cycle, forming a complete graph if there are less than k+1 ter-
minals. The edges longer than unit length are added using the
required number of beads. Figure 1(c) shows the constructed
cycle after removal of Steiner nodes, and Figure 1(d) shows
the final topology (beaded Harary graph) on these terminals
nodes.

It has been proved in Kashyap et al. [3] that for terminals
distributed in the Euclidean plane, the cycle constructed in
step 6 of Algorithm 3 contains maximum 5sj beads for each

2Note that there will be at least two terminals connected to the Steiner
nodes of STj . If there were only one terminal node, the Steiner nodes of
STj could be deleted from the optimal Steiner graph without affecting the
connectivity. In case of two terminal nodes, adding one edge between the two
makes it a complete graph, which suffices, as shown before.

Algorithm 3 Removal of Steiner nodes and addition of beads
in STj

1: Start at root st1 of STj .
2: Connect to it all terminals within its transmission range,

and mark them.
3: Construct a tree Tj , with the vertex set as the Steiner nodes

in STj and a leaf vertex corresponding to each marked
terminal vertex. The edges are the edges of STj and the
edges between each Steiner node and the marked terminal
vertices connected to it.

4: Do a Depth First Search (DFS) traversal of Tj rooted at
st1, starting with any child of st1. For each node, traverse
its children in an anti-clockwise manner.

5: Each time a new Steiner node sti is encountered, connect
it to all unmarked terminal vertices in its range, and mark
them. Update Tj by adding these terminal vertices, and
continue DFS traversal around sti from the edge between
sti and its parent.

6: Connect all the terminal vertices in order of their DFS
traversal and complete the cycle between them.

7: Connect each vertex to preceding and successive �k/2�
vertices on the cycle. Form a complete graph if there are
less than k + 1 terminals.

8: Add beads to all added edges of length greater than one.
9: Add the newly added edges to Gj−1, and remove the

Steiner nodes of STj and all incident edges from Gj−1.
The resulting graph is Gj .

E

DC

B

A

(a) Harary graph

A

B

C D

E

(b) First cycle

A

C

E

(c) Second cycle

A

B

D

(d) Third cycle

B E

(e) Fourth cycle

Fig. 2. Example for decomposition of a Harary graph for k = 3

Steiner component STj with sj Steiner nodes. The analysis
only uses the property that the terminals are connected to STj

in the Steiner solution. Thus, this result holds for any subset of
terminals connected to STj , as long as the cycle is constructed
in an anti-clockwise manner.

Let the number of terminal nodes in Hj (connected to the
Steiner component in consideration) be N . We consider the
case N ≥ k + 1, so that we can construct the Harary graph3.
We decompose the constructed Harary graph into complete

3Else, we construct a complete graph, which is a subset of the set of edges
in the Harary graph (since N < k + 1). Thus, the analysis for Harary graph
is an upper bound for this case.

and incomplete cycles (we call all of them cycles), and use
the result of Kashyap et al. [3] to compute its cost. Let us
explain it with an example of Figure 2. Figure 2(a) shows
the Harary graph constructed for k = 3, with each terminal
connecting to preceding and successive two nodes on the cycle.
We decompose the graph into multiple cycles as follows:

• Type I cycle: First cycle is the cycle formed between all
the terminals, as constructed in steps 1-6 of Algorithm 3.

• Type II cycles: We now consider the edges needed to
connect nodes with preceding and successive nodes i
hops away (number of edges between the nodes in the
Type I cycle) on the Type I cycle into multiple cycles.
We start with any terminal node (node A in the example),
and form a complete or incomplete cycle by starting
with the node and traversing edges that connect nodes i
hops away, in an anti-clockwise manner. The cycle ends
before or at the node we started at. Figure 2(c) shows the
constructed cycle for i = 2. We repeat the procedure for
the i−1 nodes successive to the node we started at (node
B in the example, for i = 2), obtaining one complete or
incomplete cycle in each case. Figure 2(d) shows this
cycle for the example. Each cycle contains 	N/i
 edges,
and there are i Type II cycles. Each node is connected
to one preceding node and one successive node i hops
away. Thus, N edges are required to connect all nodes
with neighbors i hops away on the Type I cycle. The
total edges covered by Type II cycles is i	N/i
. Thus, to
cover the N − i	N/i
 uncovered edges, we form Type
III cycles, which are just single edges.

• Type III cycles: These cycles are single edges, each
pertaining to one of the N − i	N/i
 uncovered edges.
Figure 2(e) shows the cycle for the example.

There is one Type I cycle in the Harary graph, and i Type
II and N − i	N/i
 Type III cycles for each i = 2, 3, .., �k/2�.
These cycles cover all the edges in the Harary graph, and thus
the number of beads needed for these cycles is the same as
needed for the Harary graph. The Type I cycle uses at most
5sj beads. The following lemma bounds the number of beads
needed for the Type II edges.

Lemma 3.2: A Type II cycle constructed from edges con-
necting nodes i hops apart requires at most 5sj beads.

Proof: Let the set of terminals in the Harary graph be
Tj . Let the set of terminals in the Type II cycle be T ′

j ⊂ Tj .
Consider another instance of the problem, in which only the
terminals of T ′

j are connected to the Steiner node MST STj .
Follow steps 1-6 of Algorithm 3 on this instance to form a
cycle. This cycle has at most 5sj beads, Kashyap et al. [3]. The
only difference between this instance and the original instance
is that the terminals Tj\T ′

j have been removed. The order
of children traversal in the DFS traversal is anti-clockwise.
Removing the terminals Tj\T ′

j does not change the order
in which the terminals T ′

j are encountered (compared to the
original instance). Thus, the cycle constructed cycle is the
same as the Type II cycle in consideration (or has one extra
edge if the Type II cycle is not complete). Thus, the Type II

cycle has at most 5sj beads.
Now, we consider the Type III cycles. Each Type III cycle

is just an edge. Thus, the required number of beads is at most
the number of Steiner nodes in the DFS path between the end-
terminals of this edge. Thus, a Type III edge requires at most
sj beads.

Thus, the total number of beads (bj) required by the Harary
graph is as given in Equation 2.

bj ≤ 5sj +
�k/2�∑

i=2

(5i + N − i	N/i
)sj

= 5sj +
�k/2�∑

i=2

(5i + i(N/i − 	N/i
))sj

≤ 5sj +
�k/2�∑

i=2

(6i)sj

= (6
�k/2�∑

i=1

i − 1)sj

= (3�k/2�(�k/2� + 1) − 1)sj (2)

Since the Steiner components SCj do not have common
Steiner nodes, the number of beads is at most (3�k/2�(�k/2�+
1) − 1)s. Thus, a solution with minimum number of beads
requires at most (3�k/2�(�k/2� + 1) − 1)s beads.

Theorem 3.3 states the main result of this section.
Theorem 3.3: If the optimal network uses s Steiner nodes

so that terminals distributed in the Euclidean plane are k-vertex
connected, Algorithm 1 forms a network with maximum of
c(3�k/2�(�k/2� + 1) − 1)s beads and zero Steiner nodes, in
which the terminal nodes are k-vertex connected.

Proof: The algorithm for finding a k-vertex connected
subgraph is a c-approximation for finding the minimum cost
k-vertex connected subgraph (cost of each edge being number
of beads required to form it). Thus, according to Lemma 3.1,
the number of beads required is at most c(3�k/2�(�k/2� +
1) − 1)s. The last step of Algorithm 1 (sequential removal
step) removes beads from the network by allowing them to
connect to all nodes within the transmission range, so the
resulting network after sequential removal also has maximum
of c(3�k/2�(�k/2� + 1) − 1)s relay nodes.

For k = 2, c is 2, and the algorithm is 10-approximation,
which is consistent with the results of Kashyap et al. [3].

IV. ALGORITHM FOR k-EDGE CONNECTIVITY

We follow the algorithm proposed by Kashyap et al. [4]. To
connect two terminal nodes outside each other’s transmission
range, the relay nodes are placed on the straight line connect-
ing the two nodes. The algorithm proceeds by forming a multi-
graph Gc on the terminal nodes. There are k edges between
each pair of terminal nodes in Gc. We use the weight function
of Equation 1 to weight the edges. We do not allow the relay
nodes to have edges other than the ones required to form the
edge they are placed on. Then we compute an approximate

minimum cost spanning k-edge connected subgraph (G′
c) of

the multi-graph Gc.
The problem of finding the minimum cost spanning k-

edge connected subgraph of a graph is NP -Hard (Gary and
Johnson [13]). Thus, we use an approximation algorithm
for the problem, proposed by Khuller and Vishkin [18].
The algorithm achieves an approximation ratio of 2 for the
problem, and takes O((kn)2) time for a graph with n nodes.
The algorithm uses the matroid intersection based algorithm
of Gabow [19], which finds k edge-disjoint spanning trees
from a root vertex in a directed graph. It is worth noting
that the weight function of Equation 1 is not a metric as it
does not satisfy triangle inequality. Thus, the approximation
algorithm of Khuller and Vishkin [18] is the best known for
the problem. In the resulting subgraph from the approximation
algorithm of Khuller and Vishkin [18], the relay nodes are
placed to form the links (of length greater than one) of the
subgraph. In the next section, we prove that this algorithm
has an approximation ratio of 2M�k/2�s. The solution is then
improved by removing some relays. The relays are allowed
to form edges with all nodes in their transmission range
and sequentially removed if k-edge connectivity is preserved.
We call this step the sequential removal step, and it takes
O(n′((n + n′)m)) time, where n′ is the number of relays
before the sequential removal step, and m is the number of
edges in the network formed by the terminals and relays. Thus,
the first part of the algorithm takes O((kn)2) time, while
the complete algorithm takes O((kn)2 + n′m(n + n′)) time.
Algorithm 4 describes the algorithm. For a network in a cuboid
of length L, the maximum number of relays on any edge in Gc

is O(L), and the number of edges in the graph at the output of
Step 3 of Algorithm 4 (G′

c) is k(n−1), thus, n′ = O(knL) and
m = O((knL)2). Therefore, the algorithm takes O((knL)4)
time.

A. Proof of Approximation Ratio

We now analyze the algorithm to provide with approxi-
mation guarantees. Let the terminal nodes be placed in any
metric space with MST number M [6]. MST number is
defined as the maximum node degree in a minimum-degree
Minimum Spanning Tree (MST) spanning points from the
space. The MST number for the Euclidian plane is 5 [5], three-
dimensional Euclidian space is 12, and rectilinear plane (two-
dimensional space with metric defined by L1 norm) is 4. The
approximation ratio for the MST based algorithm of [9] for
connecting terminals using minimum relays has been shown to
be M −1 in [10]. We prove that the algorithm is a 2M�k/2�-
approximation.

We start with some notation. Let T be the set of terminals,
and S be the set of optimally placed Steiner nodes (relay
nodes) needed to achieve k-edge connectivity among the
terminal nodes. Let s be the number of Steiner nodes needed
when we place them optimally, i.e, s = |S|. In the proof,
we will call the relay nodes placed on straight lines between
terminals (as in our algorithm) beads and the optimally placed
relay nodes Steiner nodes.

Algorithm 4 Relay placement for k-edge connectivity

1: Make a multi-graph Gc = (V,Ec) by adding k edges
between each pair of vertices of graph G.

2: Weight the edges of the graph as follows. |e| represents
the length of edge e.

ce = �|e|� − 1

3: Compute an approximate minimum cost spanning k-edge
connected subgraph from this graph Gc using the approx-
imation algorithm proposed by Khuller and Vishkin [18].
Let the resulting graph be G′

c.
4: Place relay nodes (number equal to the weight of the edge)

on the edges in G′
c with link costs greater than zero.

5: For all pairs of nodes (including the relay nodes) in G′
c

within each other’s transmission range, form an edge.
6: For the relay nodes sorted arbitrarily, do the following

(starting at i = 1):

• Remove node i (and all adjacent edges).
• Check for k-edge connectivity between the terminals.
• If the graph is k-edge connected, repeat for i = i+1,

else put back the node i and corresponding edges, and
repeat for i = i + 1.

• Stop when all relay nodes have been considered.

7: Output the resulting graph.

As a recap of our algorithm, it forms a k-edge connected
network among the terminal nodes by placing additional links
between them, and if two terminal nodes are more than unit
distance apart, it adds beads (relay nodes) to form that link.
When we add such a link of length l, it consists of �l� − 1
beads.

We first prove the following lemma, and then the main result
of this section.

Lemma 4.1: A k-edge connected network on terminal
nodes using minimum number of beads contains at most
M�k/2�s beads, where s is the minimum number of Steiner
nodes needed.

Proof: Let G0 = (V0, E0) be the optimal k-edge
connected network on terminals (having the minimum number
of Steiner nodes).

We follow a slightly modification of Algorithm 2 to con-
struct a k-edge connected network that has beads and no
Steiner nodes. We will prove that this network does not contain
more than Mk beads.

The algorithm starts by finding the connected components
(SCi) of Steiner nodes in the graph constructed on the Steiner
nodes. It constructs a Breadth First Search (BFS) spanning tree
on Steiner nodes for each connected component, starting with
any Steiner node in that component as the root. Let the trees
be ST1, .., STm. The algorithm then removes Steiner nodes
of a connected component SCj from Gj−1 and adds beads
between the terminals connected to those Steiner nodes to get
Gj which is also k-edge connected between terminal nodes
(Step 4). The process is repeated for all connected components,

and the resulting graph has zero Steiner nodes and is k-edge
connected on the terminals.

Let us now explain the procedure to construct Gj from Gj−1

by adding beads between the terminal nodes and removing
Steiner nodes. Consider the graph formed by the Steiner nodes
in STj and the terminal nodes within the transmission range of
these Steiner nodes. Denote this graph by Hj . We form a cycle
among the terminals in Hj , and replicate the edges to have
�k/2� copies of each. We use beads to form the edges longer
than unit length. The terminals in Hj are k-edge connected
since deleting any set of k − 1 edges does not disconnect
the terminals from each other. This procedure maintains k-
edge connectivity between the terminal nodes that were k-edge
connected because of the Steiner nodes in STj . As we do this
for all trees ST1, .., STm

4, and do not create any (k−1)-edge
cut in any step, the resulting network is k-edge connected on
the terminals.

It has been proved in Kashyap et al. [4] that the constructed
cycle contains at most Msj beads for each Steiner component
STj with sj Steiner nodes. We replicate the edges to include
�k/2� − 1 additional copies of each edge, and thus the graph
uses M�k/2�sj beads. Since the Steiner components do not
have common Steiner nodes, total number of beads required
is bounded by M�k/2�s.

Theorem 4.2 states the main result of this section.
Theorem 4.2: If the optimal network uses s Steiner nodes

so that terminals distributed in metric space of MST number
M are k-edge connected, Algorithm 4 forms a network with
maximum of 2M�k/2�s beads and zero Steiner nodes, in
which the terminal nodes are k-edge connected.

Proof: The algorithm of Khuller and Vishkin [18] is a 2-
approximation for finding the minimum cost (cost of each edge
being number of beads required to form it) k-edge connected
subgraph. Thus, the number of beads required is at most
2M�k/2�s. The last step of Algorithm 4 (sequential removal
step) removes beads from the network by allowing them to
connect to all nodes within the transmission range, so the
resulting network after sequential removal also has at most
2M�k/2�s relay nodes. Note that for k = 2, the algorithm is
a 2M -approximation, which is consistent with the ratio proved
in Kashyap et al. [4].

V. GENERALIZATION TO RESTRICTED RELAY PLACEMENT

We extend our results for terminals distributed in a Euclidian
plane to the scenario where relays cannot be placed in certain
polygonal regions of the network . We call these regions for-
bidden regions. We assume that two nodes can communicate
if they are within each other’s transmission range even when
there is a forbidden region between them. We modify the
edge and vertex connectivity algorithms to work with the same
approximation guarantees for this generalization.

We follow the same algorithms as before for both edge
connectivity and vertex connectivity. It may not be possible

4If two terminal nodes are adjacent in multiple cycles formed while
removing the Steiner components, we form maximum k beaded links between
them. This suffices for maintaining k-edge connectivity.

to connect two terminals by placing relay nodes on the
straight line between them due to the forbidden regions. Thus,
Equation 1, which represents the number of relays needed to
connect two terminals by placing relays on the line between
them, cannot be used to weight the edges of the network
formed on terminal nodes in our algorithms. Recently, a
polynomial time algorithm has been proposed for placing
the minimum number of relay nodes needed to form a link
between two nodes with the presence of polygonal forbidden
regions between them [20] . The problem is called the puddle-
jumper problem. We modify our edge weights by running
the algorithm given in [20] on each pair of terminals in the
network to find the minimum number of relay nodes needed
for each link, and using that as the weight of each edge.
We then run our edge connectivity and vertex connectivity
algorithms on a network with these edge weights. Then, for the
selected links, we place the relays according to the algorithm
given in [20].

A. Proof of Approximation Ratio

We first prove that the approximation ratio for the k-vertex
connectivity algorithm is O(k2) for terminals distributed in the
Euclidian plane. We follow the same construction as before,
the only change being that beads (relay nodes) are not placed
on straight lines between terminal nodes now; instead they
are placed optimally taking forbidden regions into account.
The only part of the proof that needs reconsideration to take
forbidden regions into account is when Steiner nodes on a tree
(STj) are removed from the optimal Steiner solution and beads
are placed to make the cycle (and the Harary graph) between
terminal nodes connected to tree STj (see Algorithm 3). We
argue that the number of relays needed to form a beaded link
between two terminals is still upper bounded by the number of
Steiner nodes encountered in the depth first traversal between
the two terminals: Take any two terminals being connected
using beads, and let a be the number of Steiner nodes on
the DFS path between them. Thus, there is a placement of
Steiner nodes to connect the two terminal nodes using a
Steiner nodes. As even Steiner nodes could not be placed in
forbidden regions, and we connect the terminals using beads
placed according to the optimal algorithm of [20], the number
of beads required is upper bounded by a. Thus, each bead
can still be charged to a different Steiner node on the DFS
path between the terminals. We showed in Section IV that
each Steiner node is charged at most (3�k/2�(�k/2�+1)−1)
times (M = 5 for Euclidian plane), so the total number of
beads required for replacing the Steiner node tree STj is still
(3�k/2�(�k/2� + 1) − 1)sj , sj being the number of Steiner
nodes in STj . Thus the total number of beads required in
the network is at most (3�k/2�(�k/2� + 1) − 1)s for the
beaded network using minimum number of beads, s being
the number of optimal Steiner nodes. As our algorithms use
c-approximations (c = 2 for edge-connectivity) for finding the
optimal beaded network, the algorithms are c(3�k/2�(�k/2�+
1) − 1)s-approximations.

The same arguments can be used to prove that the edge-
connectivity algorithm is 10�k/2�-approximation for this gen-
eralization (c = 2 for edge-connectivity, and M = 5 for
Euclidean plane).

VI. FULL k-CONNECTIVITY

We now present the algorithms and analysis for achieving
k-vertex and k-edge connectivity between terminals and added
relays. We first discuss k-vertex connectivity.

A. Full k-vertex connectivity

We use the algorithm proposed in Bredin et al. [2]. The
algorithm adds relays to find a subgraph on terminals that is
k-vertex connected on terminals using the algorithm presented
in Section III. Then, for each edge of the k-connected subgraph
with weight greater than zero, i.e., with at least one relay, the
algorithm places additional k − 1 relays at each of the end
terminal vertices of the edge, and k−1 relays along with each
relay used on the edge. In the resulting graph, all terminals
and relays have k-vertex connectivity. The algorithm has been
proved to have an approximation ratio of O(k4) for terminals
in Euclidean plane. We improve the analysis, and prove the
algorithm to be an O(k3)-approximation. Theorem 6.1 states
the result. Here, c is the approximation ratio of the best
algorithm for finding a k-vertex connected subgraph of a
graph.

Theorem 6.1: If the optimal network uses s Steiner nodes
so that terminals and Steiner nodes are k-vertex connected, the
algorithm of Bredin et al. [2] forms a network with at most
3c(3�k/2�(�k/2� + 1) − 1)ks relays and zero Steiner nodes,
in which the terminal and relay nodes are k-vertex connected.

Proof: The optimal network that is k-vertex connected
only on terminals uses s Steiner nodes. Thus, according to
Theorem 3.3, the intermediate graph that is k-vertex connected
on terminals has at most c(3�k/2�(�k/2�+1)−1)s relays. As
shown in Bredin et al. [2], for each edge between terminals
with w ≥ 1 relays, we duplicate them to have a total of
kw + 2(k − 1) < 3kw relays on the edge. Thus, the total
number of relays in the final fully k-vertex connected graph
is bounded by 3c(3�k/2�(�k/2� + 1) − 1)ks, which is an
O(k3)-approximation, an O(k) improvement over the previous
bounds of Bredin et al. [2].

B. Full k-edge connectivity

For edge connectivity, we use the algorithm presented in
Section IV. We use the algorithm to construct a k-edge
connected subgraph on terminals, and then duplicate the relays
needed on the edges of that subgraph. For each edge of weight
greater than zero, we place additional �k/2�−1 relays at each
end terminal vertex of the edge, and each relay location on
that edge. The resulting graph is k-edge connected on both
terminals and relays. We prove the algorithm is an O(Mk2)-
approximation for terminals distributed in a metric space of
MST number M . Theorem 6.2 states the result.

Theorem 6.2: If the optimal network uses s Steiner nodes
so that terminals and Steiner nodes are k-edge connected, our

algorithm forms a network with at most 6M�k/2�2s relays
and zero Steiner nodes, in which the terminal and relay nodes
are k-edge connected.

Proof: The optimal network that is k-edge connected
only on terminals uses s Steiner nodes. Thus, according to
Theorem 4.2, the intermediate graph that is k-edge connected
on terminals has at most 2M�k/2�s relays. Then, for each
edge between terminals with w ≥ 1 relays, we duplicate them
to have a total of �k/2�w + 2(�k/2� − 1) < 3�k/2�w relays
on the edge. Thus, the total number of relays in the final fully
k-edge connected graph is bounded by 6M�k/2�2s.

VII. CONCLUSION

We considered the problem of constructing a fault-tolerant
topology among sensor nodes using minimum number of
additional relay nodes. We proposed O(k2)-approximation
algorithms for achieving k-vertex connectivity between sensor
nodes distributed in the Euclidean plane. We proposed 2Mk-
approximation algorithms for achieving k-edge connectivity
between terminal nodes distributed in any metric space with
MST number M . We extended our algorithms to work with the
same approximation guarantees for the generalization where
the relay nodes cannot be placed in certain polygonal regions
of the network. We analyzed an existing algorithm proposed
for achieving k-vertex connectivity between sensor nodes
and relays using minimum number of relays, and proved
it to have an approximation guarantee of O(k3), which is
an O(k) improvement over previously proved bounds. We
also proposed an algorithm for achieving k-edge connectivity
between sensor nodes and relays using minimum number of
relays, and proved it to have an approximation guarantee of
O(Mk2).

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393–
422, 2002.

[2] J. L. Bredin, E. D. Demaine, M. Hajiaghayi, and D. Rus, “Deploying
sensor networks with guaranteed capacity and fault tolerance,” ACM
MobiHoc, pp. 309–319, 2005.

[3] A. Kashyap, S. Khuller, and M. Shayman, “Relay placement for higher
order connectivity in wireless sensor networks,” IEEE INFOCOM, 2006.

[4] ——, “Relay placement for fault-tolerance in wireless sensor networks
in higher dimensions,” submitted to ACM Trans. Sensor Networks, 2006.

[5] C. Monma and S. Suri, “Transitions in geometric minimum spanning
tree,” Discrete and Computational Geometry, vol. 8, pp. 265–293, 1992.

[6] G. Robins and J. S. Salowe, “Low-degree minimum spanning trees,”
Discrete Computational Geometry, vol. 14, pp. 151–165, 1995.

[7] B. Hao, J. Tang, and G. Xue, “Fault-tolerant relay node placement in
wireless sensor networks: Formulation and approximation,” IEEE HPSR,
pp. 246–250, 2004.

[8] H. Liu, P. Wan, and X. Jia, “Fault-tolerant relay node placement in
wireless sensor networks,” International Computing and Combinatorics
Conference (COCOON), 2005.

[9] G.-H. Lin and L. Wang, “Steiner tree problem with minimum number
of Steiner points and bounded edge-length,” Information Processing
Letters, vol. 69, pp. 53–57, 1999.

[10] I. Mǎndoiu and A. Zelikovsky, “A note on the mst heuristic for bounded
edge-length Steiner trees with minimum number of Steiner points,”
Information Processing Letters, vol. 75, no. 4, pp. 165–167, 2000.

[11] D. Chen, D.-Z. Du, X.-D. Hu, G.-H. Lin, L. Wang, and G. Xue,
“Approximations for Steiner trees with minimum number of Steiner
points,” Theoretical Computer Science, vol. 262, pp. 83–99, 2001.

[12] X. Cheng, D.-Z. Du, L. Wang, and B. Xu, “Relay sensor placement in
wireless sensor networks,” ACM Winet, 2004.

[13] M. Garey and D. Johnson, Computers and Intractability: A guide to the
theory of NP-Completeness. Freeman and Company, 1979.

[14] S. Khuller and B. Raghavachari, “Improved approximation algorithms
for uniform connectivity problems,” Journal of Algorithms, vol. 21,
no. 2, pp. 434–450, 1996.

[15] G. Kortsarz and Z. Nutov, “Approximating node connectivity problems
via set covers,” Algorithmica, vol. 37, pp. 75–92, 2003.

[16] V. Auletta, Y. Dinitz, Z. Nutov, and D. Parente, “A 2-approximation al-
gorithm for finding an optimum 3-vertex connected spanning subgraph,”
Journal of Algorithms, vol. 32, pp. 21–30, 1999.

[17] Y. Dinitz and Z. Nutov, “A 3-approximation algorithm for finding opti-
mum 4,5-vertex connected spanning subgraphs,” Journal of Algorithms,
vol. 32, pp. 31–40, 1999.

[18] S. Khuller and U. Vishkin, “Biconnectivity approximations and graph
carvings,” Journal of the ACM, vol. 41, no. 2, pp. 214–235, 1994.

[19] H. N. Gabow, “A matroid approach to finding edge connectivity and
packing arborescences,” IEEE Annual Symposium on Foundations of
Computer Science, pp. 812–822, 1991.

[20] E. Arkin, E. Demaine, and J. Mitchell, “The puddle-jumper problem,”
Personal Communication, 2005.

